AOCS COMMITTEE MEETINGS

AOCS Headquarters Office Chevy Chase Room, Lobby Level

SATURDAY, MARCH 30

3:00 P.M. Biochemical Methods-Dupont Room

SUNDAY, MARCH 31

- 9:00 A.M. Lipids Advisory & Editorial Board—Edison Room 10:00 A.M. Governing Board—Dupont Room 10:00 A.M. Examination Board—Farragut Room 2:00 P.M. Blood Lipids Determination—Edison Room

MONDAY, APRIL 1

- -Edison Room
- 1:00 P.M. Awards Committee—Dupont Room
 1:00 P.M. Membership—Edison Room
 1:00 P.M. Drying Oils—Farragut Room
 2:00 P.M. Advertsing, Journal & Lipids—Edison Roo
 2:00 P.M. Instrumental Techniques—Farragut Room
 2:00 P.M. Honored Student Program—Grant Room
 4:00 P.M. Education—Edison Room
 5:00 P.M. International Relations—Dupont Room

TUESDAY, APRIL 2

- Spectroscopy—Dupont Room
 Dibasic Acid—Edison Room
 Hydrogenated Oils—Dupont Room
 Feed Grade Fats—Edison Room
 Technical Safety and Engineering—Farragut Room
 Polymerized Acids—Edison Room
 Aflatoxin—Banfroft Room
 Seed and Meal Analysis—Dupont Room
 National Meeting, Program & Planning—
 Edison Room
- 8:00 A.M. 9:00 A.M. 10:00 A.M. 10:00 A.M. 10:00 A.M. 11:00 A.M. 2:00 P.M. 3:00 P.M.

WEDNESDAY, APRIL 3

- AY, APRIL 3

 Journal—Dupont Room
 Standards—Edison Room
 Antioxidants—Farragut Room
 Neutral Oil Loss—Grant Room
 AOCS-ASTM (D12-T5, TG-5)—Hamilton Room
 Smalley Check Sample—Dupont Room
 Fatty Nitrogen—Farragut Room
 Gossypol Analysis—Grant Room
 Safflower Seed Analysis—Farragut Room
 Cellulose Yield—Dupont Room
 Communications—Edison Room
 Uniform Methods—Farragut Room
 AOCS-ASTM (D12-T5, TG-5)—Hamilton Room
 Bleaching Methods—Edison Room
 Governing Board—Dupont Room
 AOAC-AOCS Aflatoxin—Edison Room WEDNESD 8:00 A.M. 9:00 A.M. 9:00 A.M. 9:00 A.M. 10:00 A.M. 10:00 A.M. 10:00 A.M. 10:00 A.M. 1:00 P.M. 1:00 P.M.

AACC Headquarters Office Adams Room, Lobby Level

SATURDAY, MARCH 30

6:00 P.M. Board of Directors-Bancroft Room

SUNDAY, MARCH 31

- 2:00 P.M. 4:00 P.M. 4:00 P.M.
- Board of Editors—Bancroft Room Technical Policy Committee—Hamilton Room Program Advisory Committee—Independence Room

MONDAY, APRIL 1

- 4:00 P.M. 4:00 P.M. 4:00 P.M. 4:00 P.M.
- Chemical Leavening Agents—Farragut Room Flour Particle Size—Farragut Room Enzyme Assay—Grant Room Falling Number/Subcommitte of Quality Tests—
- 4:00 P.M. 4:00 P.M. 4:00 P.M. 5:00 P.M.

- Falling Number/Subcommitte of Quality Tests— Hamilton Room
 Sanitation Methods—Independence Room
 Test Baking—Jackson Room
 Vitamin Analysis—Kalorama Room
 Monitoring Radioactivity in Cereal Products—
 Farragut Room
 Experimental Milling—Hamilton Room
 Oxidizing and Bleaching Agents—Jackson Room

TUESDAY, APRIL 2

- 3:00 P.M. 4:00 P.M.

- APRIL 2
 Advisory Council—Military Room
 Cookie Flour—Farragut Room
 Edible Fats and Oils—Grant Room
 Macaroni Products Analysis—Hamilton Room
 Pesticide Residues—Independence Room
 Physical Testing Methods—Jackson Room
 Udy Protein/Subcommittee of Quality Tests—
 Kalorama Room
 Bread Flavor—Grant Room
 Micro-organisms in Cereal Products—
 Hamilton Room
 Oilseeds Analysis Methods of the Oilseeds Divi 5:00 P.M. Oilseeds Analysis Methods of the Oilseeds Division— Independence Room 5:00 P.M. Proximate Analysis—Kalorama Room

WEDNESDAY, APRIL 3

- 12:00 Noon Board of Directors—Bancroft Room 4:00 P.M. Technical Policy Committee—Hamilton Room

THE POPE TESTING LABORATORIES **Analytical Chemists**

26181/2 Main

P.O. Box 903

Dallas, Tex.

· Drying Oils and Paints

THE DIRECT DETERMINATION OF CHEMICAL SOLVENTS IN COATING MATERIALS BY MEANS OF GAS CHROMATOGRAPHY. R. J. Klepser (Napco Corp.). Paint Technol. 39(514), 663-671 (1967). The use of a packed column vapor phase chromatograph applied to the preliminary identification of chemical solvents directly in paint is described. Using a new technique, a pigmented paint without preliminary treatment is directly introduced into a in paint is described. Using a new technique, a pigmented paint without preliminary treatment is directly introduced into a gas-liquid chromatograph and the evolved solvents directly passed through the column where separation and analysis take place. Results of practical utility have been achieved. Standardization of the instrument is described. Data obtained on a number of diverse types of test paints indicate reliability and utility of the technique. The data are reported and discussed. The technique has been used to rectify production with the production of the paints of unknown origin. problems and to evaluate solvents in paints of unknown origin.

Detergents

DETERGENT COMPOSITIONS. J. L. Almstead, H. R. Greeb and T. H. Ohren (Procter & Gamble Co.). U.S. 3,351,557. A built liquid detergent composition, in the form of a stable oil-inwater emulsion, consists essentially of: (1) 1-15% by wt of a non-ionic detergent having the formula R(-OCH₂CHCH₃)₅-(-OCH₂CH₂)₂OH, where R is a C₅-C₁₅ alkyl radical or a C₆-C₁₅ alkyl phenyl radical, y is an integer from 0 to 7 and z is an integer from 5 to 45; (2) 2-10% by wt of at least one of the following surfactants: a) a sultaine detergent having the

$$\begin{array}{c|c} R_2 \\ | \\ R_1 \\ \hline N \oplus - CH_2 \\ \hline R_2 \\ X \end{array}$$

where R₁ is a C₁₀-C₁₈ alkyl radical, R₂ and R₃ are either methyl or ethyl, R4 is either a methylene, ethylene or propylene radical, and X is a hydroxyl group which is attached only to a secondary carbon atom; b) a detergent having the formula

$$\begin{array}{c}
R_6 \\
R_5 \longrightarrow Q \longrightarrow O
\end{array}$$

where R₅ is a C₁₀ to C₂₄ alkyl or monohydroxyalkyl radical containing 0-3 ether linkages, R_0 and R_7 are selected from the group consisting of methyl, ethyl, hydroxyethyl, propyl and hydroxypropyl radicals, and Q is either a phosphorus or nitrogen atom; (3) 10-36% by wt of a builder selected from the group consisting of alkali metal pyrophosphates, potassium tripolyphosphate, alkali metal salts of nitrilotriacetic acid, EDTA or ethane-1-hydroxy-1,1-diphosphonic acid; (4) an emulsion stabilizer selected from the group consisting of ethylene/maleic anhydride copolymers and methyl-vinyl-ether/maleic anhydride copolymers, in an amount between 0.3 and 2.0% by wt; (5) the balance water, the pH of the composition being between 11.7 and 13.0.

DETERGENT COMPOSITION CONTAINING ORGANIC PHOSPHONATE CORROSION INHIBITORS. R. E. Zimmerer (Procter & Gamble Co.). U.S. 3,351,558. A detergent composition is claimed, consisting essentially of: (1) 1–98% of a detergency builder selected from the group consisting of amino polyacetates, tripolyphosphates and polyphosphonates; (2) 0.05 to 25% by wt of a corrosion inhibitor having the formula R-PO(OQ)₂, where R is selected from the group consisting of a straight alkyl chain with the phosphorus attached to secondary C atoms on the chain and C₀-C₁₈ straight chain alkyl benzyl groups, and Q is a cation selected from the group consisting of hydrogen, alkali metal, mono-, di- and triethanolammonium; (3) 0-90% of other detergency builders such as alkali metal. (3) 0-90% of other detergency builders such as alkall metal pyro-, ortho-, hexaphosphates, sesqui- and bicarbonates, tetraborates and perborates; (4) an anionic, nonionic, ampholytic or zwitterionic organic detergent, in an amount not greater than about 40% of the composition and such that the ratio of builders to organic detergent ranges from about 1:2 to about 10:1. The said detergent composition is inhibited with respect to the correction of Zemac. respect to the corrosion of Zamac.

POURABLE AND FREE-FLOWING DETERGENT, WETTING AND EMULSIFYING COMPOSITIONS. W. Stein, H. Weiss and O. Koch (Henkel & Cie., G.m.b.H.). U.S. 3,351,559. A solid particulate surface active composition is claimed, characterized by outstanding pouring and free-flowing properties and containing